Question
Solving Equations and Inequalities in One Variable

1. Solve $2(3-a)=18$.	$\begin{aligned} & 2(3-a)=18 \\ & 6-2 a=18 \\ & -2 a=12 \end{aligned}$
2. Solve $2(5-x)>8$ for x.	$\begin{array}{ll} 2(5-x)>8 \\ 10-2 x>8 & x<1 \\ -2 x>-2 & \end{array}$
3. Karla wants to save up for a prom dress. She figures she can save \$9 each week from the money she earns babysitting. If she plans to spend less than $\$ 150$ for the dress, how many weeks will it take her to save enough money to buy any dress in her price range?	$9 x<150$ It will take her Iess than 16.7 weeks. $x<16.667$
4. Joachim wants to know if he can afford to add texting to his cell phone plan. He currently spends $\$ 21.49$ per month for his cell phone plan, and the most he can spend for his cell phone is $\$ 30$ per month. He could get unlimited text messaging added to his plan for an additional $\$ 10$ each month. Or, he could get a "pay-as-you-go" plan that charges a flat rate of $\$ 0.15$ per text message. He assumes that he will send an average of 5 text messages per day. Can Joachim afford to add a text message plan to his cell phone plan?	NO, b/c 5 texts a day for $\begin{gathered} 31 \text { days }=155 \text { texts } \\ .15(155)+21.49=\$ 44.74 \\ \$ 44.74>\$ 30 \end{gathered}$
5. Two cars start at the same point and travel in opposite directions. The first car travels 15 miles per hour faster than the second car. $\ln 4$ hours, the cars are 300 miles apart. Use the formula below to determine the rate of the second car. $4(r+15)+4 r=300$ What is the rate, r, of the second car?	$\begin{aligned} & 4(r+15)+4 r=300 \\ & 4 r+60+4 r=300 \\ & 8 r+60=300 \\ & -60 \quad-60 \\ & 8 r=\frac{240}{8} r=30 \mathrm{mph} \end{aligned}$
6. Solve the equation $14=a x+6$ for x. Show and justify your steps.	$\begin{aligned} & 14=a x+y \\ & \frac{-6}{8}=a x \\ & \frac{16}{a} \frac{1}{d} \\ & x=8 / a \end{aligned}$
7. This equation can be used to find h, the number of hours it takes Flo and Bryan to mow their lawn. $\boldsymbol{h} / 3+\boldsymbol{h} / \mathbf{6 = 4}$ How many hours will it take them to mow their lawn? A. 6	$\begin{aligned} & \frac{h}{3}+\frac{h}{6}=1 \\ & 6\left(\frac{h}{3}\right)+6\left(\frac{h}{6}\right)=1(6) \\ & 2 h+h=6 \end{aligned} \quad \begin{aligned} & \frac{3 h}{\frac{3}{3}}=\frac{6}{3} \\ & h=2 \\ & \text { hours } \end{aligned}$

Look at the steps used when solving $3(x-2)=3$ for x.

$$
\begin{aligned}
3(x-2) & =3 \\
3 x-6 & =3 \\
3 x-6+6 & =3+6 \\
3 x & =9 \\
\frac{3 x}{3} & =\frac{9}{3} \\
x & =3
\end{aligned}
$$

Write the original equation.
Use the Distributive Property.
Step 1
Step 2
Step 3
Step 4

Which step is the result of combining like terms?
A. Step 1
B. Step 2
C. Step 3
D. Step 4

Solving a System of Two Linear Equations
11. Solve this system of equations.

| 19. Peg and Larry purchased "no contract" cell phones. Peg's phone costs \$25 |
| :--- | :--- | :--- |
| plus \$0.25 per minute. Larry's phone costs \$35 plus \$0.20 per minute. After how |
| many minutes of use will Peg's phone cost more than Larry's phone? |

29. Which graph represents a system of linear equations that has multiple common coordinate pairs?
A.
C.

B.

D.

Represent and Solve Equations and Inequalities Graphically

Build a Function That Models a Relationship between Two Quantities
32. Which function represents the sequence?

n	1	2	3	4	5	\ldots
a_{n}	3	10	17	24	31	\ldots

A. $f(n)=n+3$ $+7$
B. $f(n)=7 n-4$
C. $f(n)=3 n+7$

$$
a_{1}=3
$$

D. $f(n)=n+7$
33. Each week, Tim wants to increase the number of sit-ups he does daily by 2 situps. The first week, he does 15 sit-ups each day. Write an explicit function in the form $f(n)=m n+b$ to represent the number of sit-ups, $f(n)$, Tim does daily in week n.

$$
\begin{aligned}
& a_{1}=15 \\
& d=2
\end{aligned}
$$

Understand the Concept of a Function and Use Function Notation
34. Given $f(x)=2 x-1$, find $f(7)$.

$$
\begin{aligned}
& \left.a_{n}=3+\ln -1\right)(7) \\
& a_{n}=3+7 n-7 \\
& a_{n}=7 \ln -4
\end{aligned}
$$

D. 1) $=n+7$
a

$$
f(n)=2 n+15
$$

38. Consider the sequence: $3,6,9,12,15, \ldots$ The first term is 3 , the second term is 6 , the third term is 9 , and so on. The "..." at the end of the sequence indicates the pattern continues without end. Can this pattern be considered a function?

$$
\begin{aligned}
& a_{1}=3 \\
& d=3
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=3+(n-1)(3) \\
& a_{n}=3+3 n-3 \\
& a_{n}=3 n
\end{aligned}
$$

This is a function because each input value n will have ene output value a_{n}.
39. A manufacturer keeps track of her monthly costs by using a "cost function" that assigns a total cost for a given number of manufactured items, x. The function is $C(x)=5,000+1.3 x$.
a. What is the domain of the function? $x \geq 0$
b. What is the cost of 2,000 items? $C(2000)=\$ 7600$
c. If costs must be kept below $\$ 10,000$ this month, what is the greatest number of items she can manufacture?
$5000+1.3 x<10000$

$$
\frac{1.3}{1.3} x<\frac{5000}{1.3}
$$

$x<3846.15$
40. Consider the first six terms of this sequence: $1,3,9,27,81,243, \ldots$
a. What is a_{1} ? What is a_{3} ? $a_{1}=1, a_{3}=9$
b. What is the reasonable domain of the function? $\{1,2,3,4,5,6\}$
c. If the sequence defines a function, what is the range? $\{1,3,9,27,81,243\}$
d. What is the common ratio of the function? $r=3$
41. The function $f(n)=-(1-4 n)$ represents a sequence. Create a table showing the first five terms in the sequence. Identify the domain and range of the function.

$$
\begin{aligned}
& f(n)=-1+4 n \\
& f(n)=4 n-1
\end{aligned}
$$

n	$f(n)$
1	3
2	7
3	11
4	15
5	19

Domain: $\{1,2,3,4,5\}$ Range: $\{3,7,11,15,19\}$

Look at the sequence in this table.

n	1	2	3	4	5	\ldots
a_{n}	-1	1	3	5	7	\ldots

Which function represents the sequence?

$$
\begin{aligned}
& a_{1}=-1 \\
& d=2
\end{aligned}
$$

A. $a_{a}=a_{n-1}+1$
B. $a_{a}=a_{n-1}+2$
C. $a_{a}=2 a$
42.
D. $a_{a}=2 a_{n-1}-3$

50. A company uses the function $V(x)=28,000-1,750 x$ to represent the depreciation of a truck, where $V(x)$ is the value of the truck and x is the number of years after its purchase. Use the table of values shown below.

\boldsymbol{x}, years	$\boldsymbol{V}(\boldsymbol{x})$, value in $\$$
0	28,000
1	26,250
2	24,500
3	22,750
4	21,000
5	19,250

51. A wild horse runs at a rate of 8 miles an hour for 6 hours. Let y be the distance, in miles, the horse travels for a given amount of time, x, in hours. This situation can be modeled by a function.

Which of these describes the domain of the function?
A. $0<x \leq 6$
B. $0 \leq y \leq 6$
C. $0 \leq x \leq 48$
D. $0 \leq y \leq 48$
a. What is the y-intercept of the graph of the function?

b. Does the graph of the function have an x-intercept?

Yes--there is an x-intercept at $(16,0)$
c. Does the function increase or decrease?

Decrease

Analyze Functions Using Different Representations
52. Consider the linear functions $f(x)=x+5, \boldsymbol{g}(\boldsymbol{x})=2 x-5$, and $\underline{\boldsymbol{h}(\boldsymbol{x})}=-\mathbf{2 x}$. Graph each function. Compare the y-intercepts and rates of change.

	$f(x)$	$g(x)$	$h(x)$
Range	\mathbb{R}	\mathbb{R}	\mathbb{R}
vinterepent	$(0,5)$	$(0,-5)$	$(0,0)$
Ratee of Chage	1	2	-2

53. What are the key features of the function $p(x)=\frac{1}{2} x-3$?

Domain: \mathbb{R}
Range: \mathbb{R}
x-intercept: $(6,0)$
y-intercept: $(0,-3)$
Interval of increase: $(-\infty, \infty)$
Interval of Decrease: none
Maximum: none
Minimum: none
Rate of Change: $1 / 2$
54. To rent a canoe, the cost is $\$ 3$ for the oars and life preserver, plus $\$ 5$ an hour for the canoe. Which graph models the cost of renting a canoe?

$$
f(x)=5 x+3
$$

55. Juan and Patti decided to see who could read the most books in a month. They began to keep track after Patti had already read 5 books that month. This graph shows the number of books Patti read for the next 10 days. If Juan has read no books before the fourth day of the month and he reads at the same rate as Patti, how many books will he have read by day 12?

A. 5

C. 15
D. 20

